

## **Manual do Produto**

CONTROLE DE NÍVEL CONTÍNUO



CONTROLE ABSOLUTO DO PROCESSO SAIBA ONDE VOCÊ ESTÁ... A QUALQUER MOMENTO



### 7250 Series Manual

#### Visão Geral

Esse documento explica a interface básica dos requerimentos, características de operação e descrição dos protocolos do software nas Séries 7250 HR Digital Stik. Além disso, desenhos com as dimensões e instalações, na sequência os números das peças e os certificados de aprovações estão inclusos ao final deste documento. É importante perceber que o produto padrão é intrinsecamente seguro e qualquer dispositivo, controlador ou conexão de rádio deste produto deve ter possuir uma barreira para atender a todos os parâmetros e necessidades especiais indicados no desenho de instalação E0241200 (pág. 6).

#### Interface Elétrica

#### Descrições do Sinal

O 7250 necessita de apenas três fios para a conexão de alimentação e interface. Energia, Dados e Terra. Sob o modelo do alojamento em aço inoxidável, o cabo de proteção ou "Shield" conectores em 4 pinos, são conectados ao alojamento de aço e devem ser aterrados.

#### Fonte de Alimentação

A fonte de alimentação na sonda "Power" é geralmente +5VDC mas pode alcançar de 3.7VDC até 7.93VDC. A principal fonte de alimentação no 7250 não é um design de "chaveamento", portanto executar a tensão maior não reduz o consumo corrente de entrada.

#### **Dados do Sinal**

O Sinal de "Dados" é um sinal do tipo "Drenagem aberta" e é usado na comunicação bidirecional dupla com comunicação serial assíncrona. Qualquer dispositivo conectado a sonda deve ter o sinal de "Drenagem aberta" e não devem ser levados em um nível lógico alto. Por causa deste sinal de dados, o drive pode ser o dispositivo mestre ou o escravo, um resistor pull up de geralmente  $1k\Omega$  deve ser o único elemento que estabiliza o nível lógico alto da tensão. Além disso, por causa desse sistema, poderá haver múltiplos dispositivos mestres ou escravos conectados juntos.

A lógica do nível de limiares de tensão é similar aos níveis TTL e um resistor de pull-up deve ser incluído no circuito de interface do usuário. Esse sinal é fixado internamente ao dispositivo 7250 com +5V TVS O estado inativo ou "idle" é um nível lógico "alto".

#### Terra

A conexão "Terra" é o caminho de retorno para "alimentação" e "energia".

#### Conexões intrinsecamente seguras

O 7250 é um dispositivo intrinsecamente seguro e portanto usado para segurança na instalação ou aplicação, deve ser conectado ao aparelho que limita a energia, tensão, e corrente ao 7250 em acordo com todos os parâmetros especificados. Consulte o desenho de instalação E0241200 (pág. 6) para mais detalhes

#### Operação

O 7250 funciona continuamente uma vez que a energia é aplicada sobre ele. Quando conectado a um dispositivo de bateria (geralmente um rádio wireless), a energia é fornecida por uma curta duração, longa o suficiente para coletar a quantidade necessária de dados, então a energia é desligada para a sonda em um esforço para reduzir o consumo de energia e economizar bateria. Se a energia é aplicada ao 7250 em uma base contínua, ele irá continuar a fazer leituras de nível e temperatura e comunicar os dados através do sinal de comunicação serial assíncrona.

#### Consumo de Energia

O 7250 consome cerca de 10mA de corrente quando não está tomando medidas de temperatura e cerca de 12mA de corrente quando está tomando medidas de temperatura (com 5 sensores de temperatura). A Figura 1 mostra o consumo de corrente do modelo 7252 no qual possui a leitura da temperatura do início (aproximadamente 700mS) e também toma 25 leituras do nível e uma leitura de interface (água) em 100mS. Como pode ser visto ao gráfico, isto é representado por um nível alto de 700mS seguido por uma segunda leitura abaixo. O sinal capturado na tela é uma leitura da tensão feita através de um resistor de 10 ohms em série com a entrada da fonte de alimentação. A escala da leitura é de 1mA pela divisão menor e 5mA pela divisão maior.

#### Protocolo do Software

Existem vários números de produtos diferentes disponíveis para as sondas de Série 7250. O 'x' no número da peça 725x identifica os dados do protocolo. A interface elétrica permanece a mesma, independente do software do protocolo especificado pelo número do modelo.

Atualmente existem duas versões de protocolo de software disponíveis (7252 e 7255). Na realidade os "protocolos" são muito semelhantes. A diferença significante é a quantidade de medições do produto transmitidas dentro de uma cadeia de dados. Um único caracter é também enviado ao início de cada cadeia de dados para identificar o tipo da cadeia de dados ou o seu protocolo.

#### Parâmetros de Comunicação (fixos)

9600 baud paridade ímpar bits de dados 7 start bits 1 1 stop bits

Formato de Dados

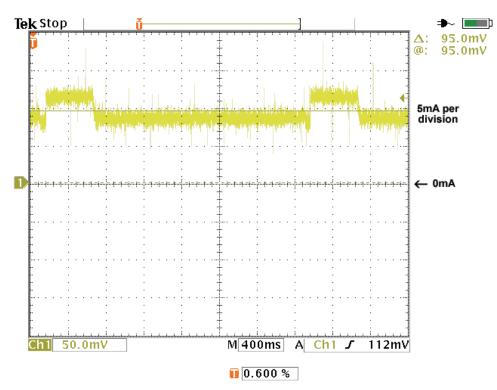



Fig. 1 Consumo de Energia

A seguência de dados está no formato ASCII e o tempo total da sequência de transmissão dos dados é por volta de 1 segundo (1) para o 7255 e três segundos (3) para o 7252.

Aproximadamente 100ms depois da alimentação, um caracter inicial ("=" para 7252, "<" para 7255) é transmitido e a primeira posição do ponto é medida e transmitida. As posições de medidas e transmissões subsequentes continuam a cada 100 ms até que todos os pontos sejam transmitidos. A posição de interface é transmitida imediatamente seguindo a posição final do ponto. Todos os dados da temperatura são então transmitidos junto com um Checksum ASCII de 2 dígitos no final seguido pelo caracter de retorno ao fim da seguência. Nota-se que uma virgula (',') é transmitida entre cada posição de medição da temperatura (veja o exemplo abaixo).

A sonda continuará a obter leituras do nível e da temperatura e a sequência de dados do processo de transmissão continuará repetidamente ao longo da energia aplicada na sonda.

O comprimento da sequência de dados depende do protocolo (i.e. 269 bytes para 7252; 134 bytes para 7255). A sequência de dados é composta por um caracter de início, informações de nível (protocolo dependente: 25 para 7252; 10 para 7255), 1 nível de interface, e 5 sensores de temperatura seguida por 2□ dígitos ASCII do Checksum e um caracter de retorno (<CR>).

Para sondas pedidas com apenas 1 sensor de temperatura (i.e. T1 ou R1), a temperatura de leitura deste sensor é colocada em todos os cinco dados de temperaturas localizadas na "string".

NOTA: Os valores fora do alcance especificado indicam uma condição de erro.

| Data String                                                              |                                                                                                    |  |  |  |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|
| s,ppp.pppp,ppp.pppp,<br>,ppp.pppp,iii.iiii,+/-tt.t,,+/-tt.t,CC <cr></cr> |                                                                                                    |  |  |  |
| s:                                                                       | Iniciar Caracter<br>(identificar o protocolo, tipo e a<br>quantidade dos dados seguintes)          |  |  |  |
| ppp.pppp:                                                                | Produto (ponto)<br>(000.0000" to 600.0000")                                                        |  |  |  |
| iii.iiii:                                                                | Interface (000.0000" to 600.0000") (Nota: Interface = 000.0000 se o Sensor é ordenado apenas com 1 |  |  |  |
| +/-tt.t:                                                                 | Temperatura (-40.0°C a +85.0°C)                                                                    |  |  |  |
| CC:                                                                      | 2 dígitos ASCII Checksum<br>(veja o processo para cálculo abaixo)                                  |  |  |  |
| <cr>:</cr>                                                               | Fim da sequência de dados – símbolo de retorno                                                     |  |  |  |

Um valor de "999.9999" será transmitido se houver um erro ao ponto de medição ou no nível de interface. Um valor de "-99.9" será transmitido se houver um erro no sensor de temperatura.

#### Cálculo do Checksum

Todos os caracteres ASCII (a partir do e incluindo o caracter inicial e a vírgula (',') depois do dígito de temperatura) na sequência da string de dados são adicionados juntos. A partir deste número. O byt menos significativo é usado para o checksume é transmitdo em seu equivalente caracter ASCII. Notar que letras maiúsculas devem ser usadas para os caracteres hexadecimais (i.e. 'A', 'B', 'C', 'D', 'E', 'F').

#### Por exemplo:

Se o valor do checksum foi de 0xA5 (hex); Um ASCII 'A' e um '5' deverão ser transmitidos para indicar o valor do checksum (i.e. 0x41 e 0x35.....Os caracteres ASCII para 'A' e '5').

#### Exemplo da Transmissão de Dados

O exemplo abaixo representa os dados transmitidos do 7255 HR Digital Stik (i.e. 10 níveis do nível) no qual possui uma transmissão com sequência cheia de 134 bytes. Bytes 0 – 130 são usados para computar a checksum:

**NOTA:** Os valores usados abaixo podem não ser representativos em aplicações reais. Os dados proporcionados são apenas como exemplos.

| Byte #s | ASCII Chr String | Nome de Nível            |  |
|---------|------------------|--------------------------|--|
| 0-1     | <,               | Iniciar Caracter         |  |
| 2-10    | 123.4567,        | Ponto 1                  |  |
| 11-19   | 456.7890,        | Ponto 2                  |  |
| 20-28   | 654.3212,        | Ponto 3                  |  |
| 29-37   | 987.6543,        | Ponto 4                  |  |
| 38-46   | 124.5789,        | Ponto 5                  |  |
| 47-55   | 234.5678,        | Ponto 6                  |  |
| 56-64   | 267.4310,        | Ponto 7                  |  |
| 65-73   | 478.2354,        | Ponto 8                  |  |
| 74-82   | 752.6143,        | Ponto 9                  |  |
| 83-91   | 891.4578,        | Ponto 10                 |  |
| 92-100  | 002.5389,        | Interface 1              |  |
| 101-106 | +22.1,           | Temperatura 1            |  |
| 107-112 | +22.3,           | Temperatura 2            |  |
| 113-118 | +22.5,           | Temperatura 3            |  |
| 119-124 | +22.3,           | Temperatura 4            |  |
| 125-130 | +22.1,           | Temperatura 5            |  |
| 131-132 | CC               | 2-dígitos ASCII Checksum |  |
| 133     | <cr></cr>        | Carriage Return          |  |

**NOTA:** Para determinar a localização atual do sensor de temperatura, obter referência nas tabelas de Espaçamento do Termomêtro no Desenho D0246600, página 2 de 2, incluindo a página 9 deste manual.

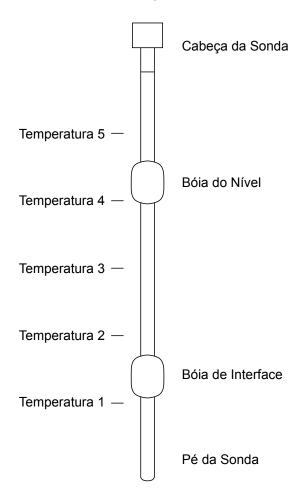



Fig. 2 Localização e Espaçamento do Sensor de Temperatura para as Séries 7250X

#### Instalação da Sonda PVDF

CUIDADO 1

NOTA: Condições Especiais para Segurança ao Uso.

O equipamento possui partes não metálicas, para prevenir o risco de faíscas elétricas na superfície não metálica, desse modo devem ser limpos apenas usando pano úmido.

#### Condições específicas de uso:

O equipamento contém peças do invólucro não metálicas. Para prevenir o risco de faiscamento eletrostático, a superfície não metálica deve ser limpa apenas com um pano úmido.

# Instalação IMPORTANTE

Certifique-se de ler e entender todas as instruções antes de começar.

#### **Desempacotamento**

Remova cuidadosamente o conteúdo da caixa recebida e verifique cada item comparando com a lista de embalagem antes de descartar qualquer material de embalagem.

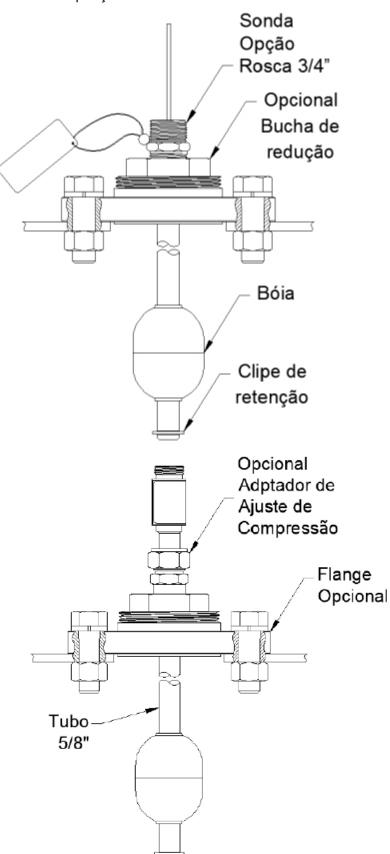
#### **Armazenamento**

As sondas medidoras de nível deverão ser armazenadas em sua embalagem original de embarque até a leitura da instalação. Danos ocorridos no armazenamento não são cobertos pela garantia do fabricante.

## Condições de Montagem CUIDADO

- Quando instalar as sondas, não dobre as sondas rígidas, isso poderá resultar em um dano permanente.
- As sondas rígidas longas devem estar apoiadas aos

dois lados enquanto são manuseadas.


- As sondas são seladas na fábrica e não possuem componentes reparáveis.
- · Não tente abrir a sonda ou abrir o tubo.
- As sondas indicadoras de nível são projetadas para aplicações industriais, mas deverão ser montadas em uma localização o mais livre o possível de vibrações, atmosferas corrosivas, ou qualquer possibilidade de danos mecânicos.
- Coloque o medidor de nível em um local razoavelmente acessível, a temperatura ambiente deverá estar entre -40°F e 158°F (-40°C até 70°C).
- Monte a sonda indicadora de nível perpendicular com a gravidade.
- A bóia deverá ter movimento livre ao longo da sonda.
- O clipe de retenção da bóia deverá estar na base da sonda.

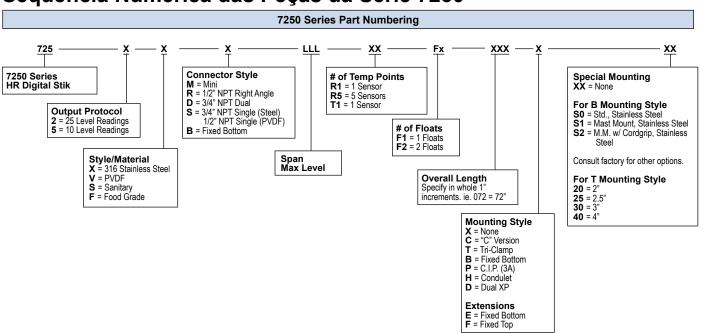
#### Considerações de Montagem

As considerações de montagem podem variar (Flanges, Ajuste por Compressão, etc.) dependendo da aplicação. Para tanques enterrados, a sonda é geralmente montada no tubo bocal, e é apoiada no fundo do tanque. Os espaçadores são usados para segurar o sensor ao centro do tubo ascendente. Enquanto a maioria dos tanques subterrâneos são horizontais e possuem um padrão de tamanho e desenho, tanques acima da terra podem variar consideravelmente. Os requerimentos para a montagem dessas sondas são simples. Uma vez que a sonda necessita de uma bóia para fornecer posição de nível há um tamanho mínimo requerido para a inserção da bóia no tanque. É recomendado que um mínimo de 2" NPT na abertura do tubo seja usado.

#### Nota de instalação:

Em sondas com conector estilo V (tubo flexível) instalação no tanque deve ocorrer no prazo de 12 meses da data da expedição. Isto minimizará eventuais danos armazenando a sonda na posição enrolada.



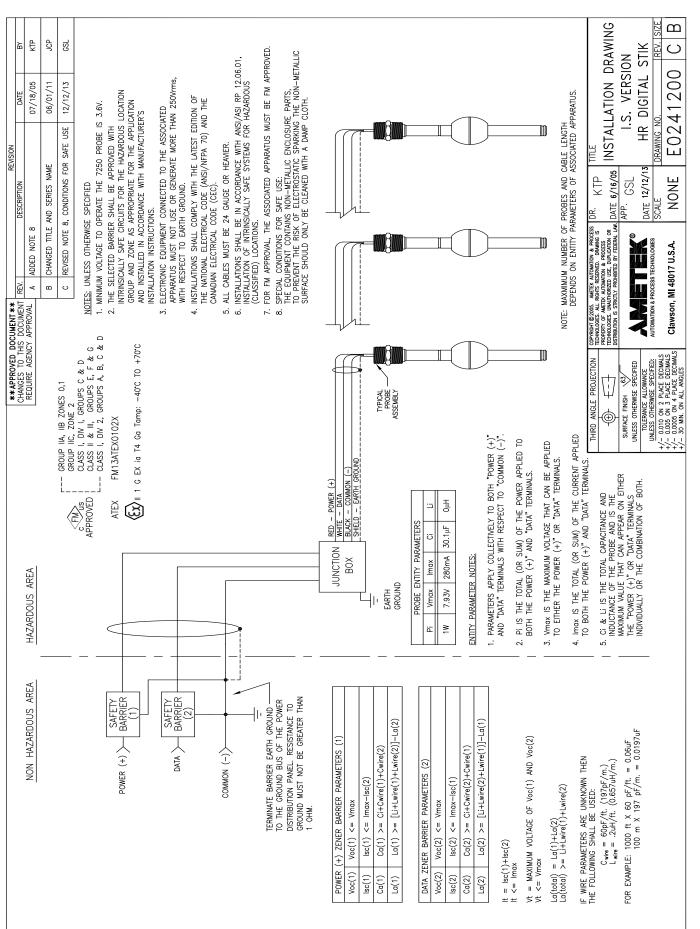

7250 Series Specifications

|                                                                                                                                                         | Spe                                                                                                                             | cifications                                                                                              |                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Nível Indicado<br>Até uma leitura de nível e<br>uma leitura de interface<br>Aço Inox. 316<br>Resolução¹<br>Repeatabilidade<br>Linearidade<br>Hysteresis | Comprimento até 288" 0.0001" Igual à Resolução +/- 0.01%² +/- 0.002%³                                                           | Níveis Lógicos                                                                                           | VoH 2.7v (Corrente Vazamento é menor que 1μA)<br>VoL 0.4v (5mA carga)<br>ViH 2.1v<br>VIL 0.9v                                    |
| PVDF (Rigida) Resolução¹ Repeatabilidade Linearidade Hysteresis PVDF (Flexible) Resolução¹ Repeatabilidade                                              | Comprimento até 192" 0.0001" Igual à Resolução +/- 0.01%² +/- 0.002%³  Comprimento de193" até 840" 0.0001" Igual à Resolução    | Cabo O cabo será com "shield" 3 condutores 22AWG com encamisamento de PVC (Belden 6501FE ou equivalente) | Vermelho: Alimentação<br>Branco: Dados<br>Preto: Comum<br>Dreno: Shield, aterrado à carcaça nos alojamentos<br>em aço inoxidável |
| Linearidade<br>Hysteresis                                                                                                                               | +/- 0.01% <sup>4</sup><br>+/- 0.002% <sup>3</sup>                                                                               |                                                                                                          |                                                                                                                                  |
| Indicação de Temperatura<br>Até 5 sensores de temperatura<br>Resolução                                                                                  | 0.1°C                                                                                                                           | Tempo de Atualização de Dados¹<br>Dados da Posição<br>Dados da Temperatura                               | 0.100 segundos<br>0.800 segundos                                                                                                 |
| Repeatabilidade<br>Incerteza<br>0°C to +100°C<br>-40°C to -1°C & +101°C to +125°C                                                                       | +/- 0.3°C<br>+/- 0.75°C<br>+/- 1.0°C                                                                                            |                                                                                                          |                                                                                                                                  |
| Alimentação Elétrica<br>Tensão<br>Corrente (@+5VDC)                                                                                                     | +5 VDC, +/- 10 % tipico (+3.7VDC Minimo)<br>10mA max. (8mA typical) plus<br>1.5mA max (1mA tipico) por temperatura do<br>sensor | Parâmetros de Entidade<br>Intrinsecamente Seguro                                                         | V <sub>max</sub> 7.93 V<br>I <sub>max</sub> 280 mA<br>P <sub>1</sub> 1.0 W<br>C <sub>1</sub> 30.1 uF<br>L <sub>1</sub> 0 μH      |
| Temperatura de Operação: -40°C to 7                                                                                                                     | 0°C (Consultar a Fábrica para Maiores Temperatura                                                                               | as)                                                                                                      |                                                                                                                                  |

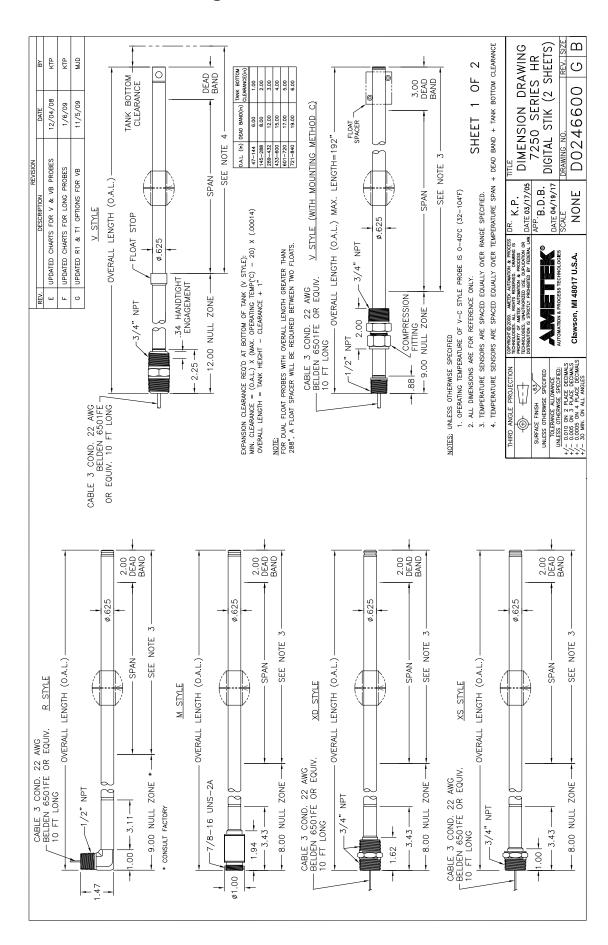
<sup>&</sup>lt;sup>1</sup> protocolo dependente



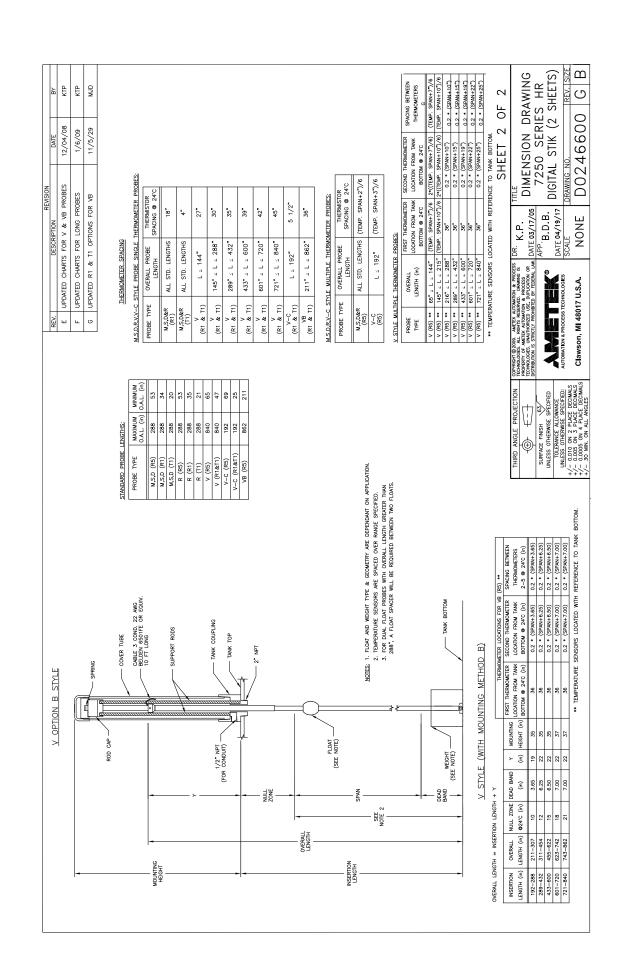
## Sequência Numérica das Peças da Série 7250




<sup>&</sup>lt;sup>2</sup> or +/- 0.015", qual for maior


<sup>&</sup>lt;sup>3</sup> or +/- 0.005", qual for maior

<sup>4</sup> or +/- 0.039", qual for maior


## 7250 Installation Drawing



### 7250 Dimension Drawing



### 7250 Dimension Drawing







Copyright 2021 by AMETEK AUTOMATION & PROCESS TECHNOLOGIES.
All Rights Reserved. Made in the USA.



205 Keith Valley Road, Horsham PA 19044

Phone: 215-674-1234

Fax: 215-674-2731 www.drexelbrook.com

7250.M13R 10/21.Z205P